If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=2x^2
We move all terms to the left:
10-(2x^2)=0
a = -2; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-2)·10
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-2}=\frac{0-4\sqrt{5}}{-4} =-\frac{4\sqrt{5}}{-4} =-\frac{\sqrt{5}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-2}=\frac{0+4\sqrt{5}}{-4} =\frac{4\sqrt{5}}{-4} =\frac{\sqrt{5}}{-1} $
| 80=x^2-1 | | (2k-1)^(2)=9 | | 9x^2-1=872 | | 1/2(x+10)=45 | | 4x+30+4x=180 | | 8x^2+23x+3=0 | | 22x-17=12x+4 | | x/51=4/17 | | 12÷y=(-6) | | (60+n)/3=(84+n)/15 | | x-4=4x-26 | | 7b^2+4=627 | | 7b^2+4=672 | | x/3+x/4+x/6+24000=x | | 3m^2+10m-7=0 | | 7p^2-9=-2 | | 26=2m^2+8 | | 15x-20=7x+2 | | 3/x+1=4/16 | | 3x^2=13+2x | | 70x+19x+2=180 | | 53x+107=1019 | | 2*n=4+3 | | p=52149/(1+.07/12)^60 | | 9p^2+3p^2+15p+5=0 | | 9+n=15-3 | | 7+n=9+2 | | 3x(-)8=28 | | 3÷x-7=2 | | 4x-3/5=2x-4/10 | | 2n^2+2n-12=n^2+6-n | | (1/9)^3x=27^3x+1 |